Rocktech Displays Limited

LCD Module Specification

Module P/N	N: <u>RK156IFHD03E</u>
Version:	1.0
Description	a: 15.6 inch TFT 1920*1080 Pixels with LED backlight, All viewing angle, 1000 nits brightness
TEL:	0086-755-26065260
Fax:	0086-755-26065261
E-mail:	Sales@rocktech.com.hk
Web:	www.rocktech.com.hk

Revision History

Date	Rev.	Page	Description
2024-06-20	1.0	All	First issue

CONTENTS

- GENERAL FEATURES
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL SPECIFICATIONS
- OPTICAL SPECIFICATIONS
- BLOCK DIAGRAM
- PIN DESCRIPTION
- TIMING CHARACTERISTICS
- OUTLINE DIMENSION
- RELIABILITY AND INSPECTION STANDARD
- PRECAUTIONS

1. General Features

Item	Spec	Remark
Display Mode	Normally Black transmissive	
Viewing Direction	Free	IPS
Input Signals	EDP Signal	
Outside Dimensions	360.00(W) x212.30(H) x5.85(D)	Without PCBA
Active Area	344.16mm(W)×193.59mm(H)	
Number of Pixels	1920(RGB)×1080	
Dot Pitch	0.17925mm(W) × 0.17925mm(H)	
Pixel Arrangement	RGB Vertical stripes	

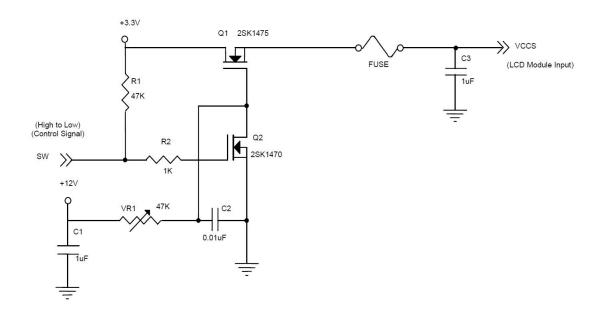
2. Absolute Maximum Ratings

The following are maximum values which, if exceeded may cause operation or damage to the unit.

ITEM	Sym.	Min.	Тур.	Max.	Unit	Remark
Power for Circuit Driving	vccs	-0.3	-	4.0	V	
Logic Input Voltage	Vin	-0.3	-	VCCS +0.3	V	
Storage Temperature	T _{ST}	-30	1	80	${\mathbb C}$	
Operating Ambient Humidity	Нор	10	1		%RH	
Operating Ambient temperature	T _{OP}	-20	-	70	$^{\circ}$	

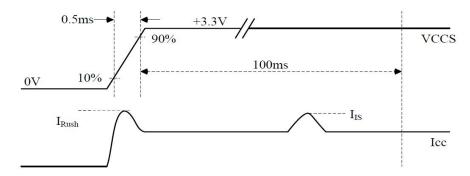
3. Electrical Specification

3.1 Driving TFT LCD Panel

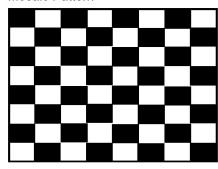

Dawawa	-1	Curah al		Limit	Nata		
Param	eter	Symbol	Min.	Min. Typ.		Unit	Note
Power Supply Voltage	VCCS	3.0	3.3	3.6	V	(1)	
Ripple Voltage	V _{RP}	-	50	150	mV	(1)	
Inrush Current	I _{RUSH}	0 -		1.5	Α	(1),(2)	
	Mosaic		210	240	270	mA	(3)
Power Supply Current	Black	I _{VCCS}	190	220	250	mA	(3)
Gurrent	H 1 line Stripe		450	550	650	mA	
HPD Pull-Low Resist	R _{HPD}	30K	-	100K	ohm	(4)	
HPD -	High Level	VH _{HPD}	2.25	-	2.75	V	(5)
	Low Level	VL _{HPD}	0	-	0.4	V	(5)

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising


 $I_{\text{IS}}\!\!:$ the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



VCCS rising time is 0.5ms

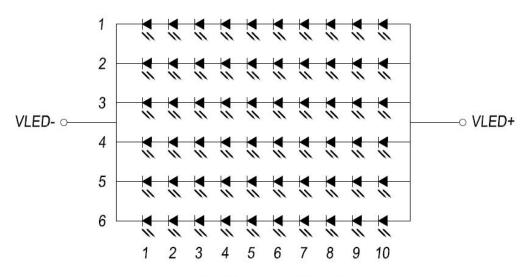
Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 \pm 2 °C, DC Current and f_v = 60 Hz, whereas a specified power dissipation check mosaic pattern is displayed

Mosaic Pattern

Active Area

- Note (4) The specified signals have pull down resistor to ground in the LCD module respectively.

 Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.


3.2 Backlight Driving Conditions

Item	Sym.	Min	Тур.	Max	Unit	Note
Backlight driving voltage	VF	1	32.0	1	V	
Backlight driving current	lF	270	300	330	mA	
Backlight Power Consumption	WBL	-	9600	1	mW	
Life Time	-	-	50,000	-		

Note 1: Each LED, If=50mA,Vf=3.2+/-0.2V.

Note 2: Optical performance should be evaluated at Ta=25°C only.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

LED Diagram Circuit

4. Optical Specifications

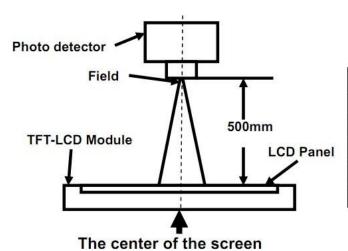
Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 500mm from the LCD surface at a viewing angle of Φ and θ equal to 0° .

Mana.	0		Values		11!4	Mata			
Item	Tr+Tf - θ _T 80 θ _B 80 θ _L 80 θ _R 80 Wx 0.274 Wy 0.311 Rx - Ry - Gx - Gy -	Min.	Тур.	Max.	Unit	Note			
1)Contrast Ratio	C/R	800	1000	-		FIG.1			
2)Module Luminance	L	900	1000	-	cd/m ²	FIG.1			
3)Response time	Tr+Tf	-	25	30	ms	FIG.2			
	θτ	80	85	-					
A)) (i accide a Accide	θв	80	85	-	D	FIO 2			
4)Viewing Angle	θL	80	85	-	Degree	FIG.3			
	θ_{R}	80	85	-					
	Wx	0.274	0.314	0.354					
	Wy	0.311	0.351	0.391					
	Rx	-	-	-					
5)01	Ry	-	-	-					
5)Chromaticity	Gx	-	-	-					
	Gy	-	-	-					
	Вх	-	-	-					
	Ву	-	-	-					

♦ Measurement System

Notes:

1. Contrast Ratio(CR) is defined mathematically as:


Surface Luminance with all white pixels

Contrast Ratio = ------

Surface Luminance with all black pixels

- 2. Surface luminance is the center point across the LCD surface 500mm from the surface with all pixels displaying white. For more information see FIG 1.
- 3. Response time is the time required for the display to transition from white to black (Rising Time, Tr) and from black to white (Falling Time, Tf). For additional information see FIG 2.
- 4. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Item	Photo detector	Field
Contrast Ratio		
Luminance	00.04	4.0
Chromaticity	SR-3A	1°
Lum Uniformity		
Response Time	BM-7A	2°

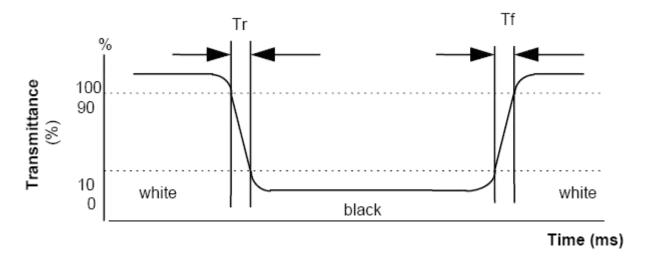
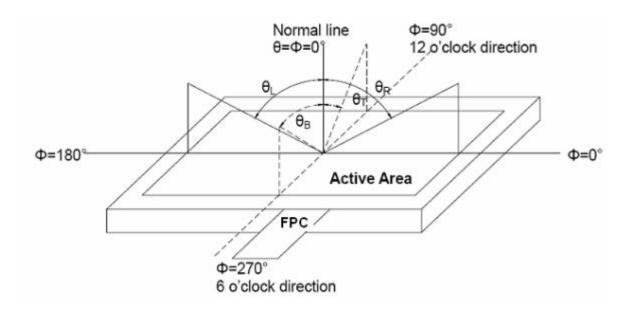


FIG. 2 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".


Response Time = Rising Time(Tr) + Falling Time(Tf)

- Rising Time(Tr): Full White 90% → Full White 10% Transmittance.
- Falling Time(Tf): Full White 10% → Full White 90% Transmittance.

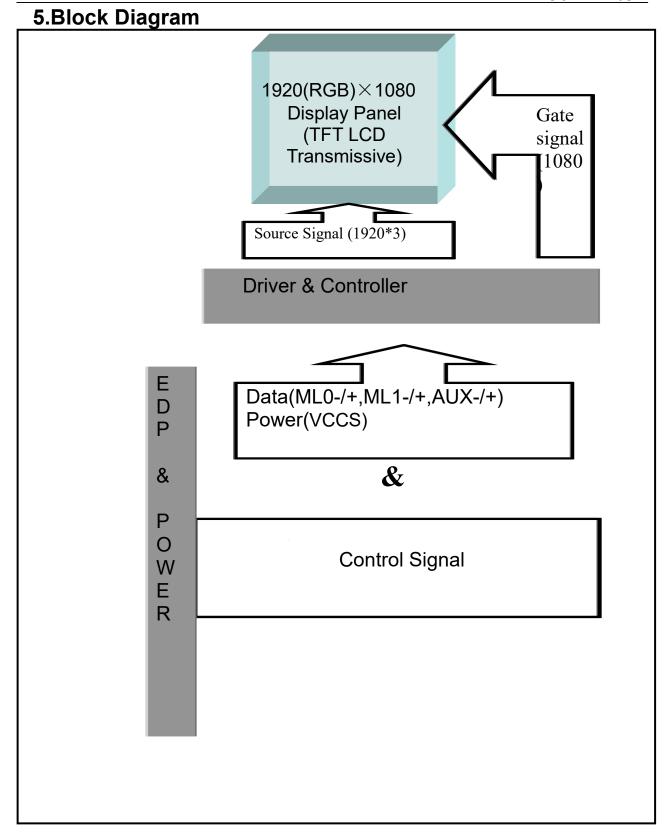


FIG. 3 The definition of Viewing Angle

Use Fig. 1(Test Procedure) under Measurement System to measure the contrast from the measuring direction specified by the conditions as the following figure.

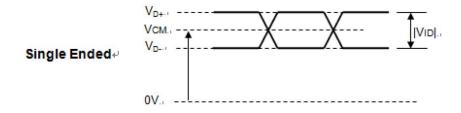
6.Pin Description

6.1 LCD Pin Interface(Connector P/N:I-PEX 20455-030E-76)

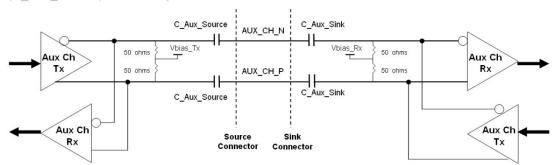
Item	Terminal	Functions
1	NC	No Connection
2	H_GND	High Speed Ground
3	ML1-	Complement Signal-Lane 1
4	ML1+	True Signal-Main Lane 1
5	H_GND	High Speed Ground
6	ML0-	Complement Signal-Lane 0
7	ML0+	True Signal-Main Lane 0
8	H_GND	High Speed Ground
9	AUX+	True Signal-Auxiliary Channel
10	AUX-	Complement Signal-Auxiliary Channel
11	H_GND	High Speed Ground
12,13	vccs	Power Supply, 3.3V
14	NC	No Connection
15,16	GND	Ground
17	HPD	Hot Plug Detect
18-30	NC	No Connection

6.2 Backlight Pin Interface(Connector P/N:BHSR-02VS-1)

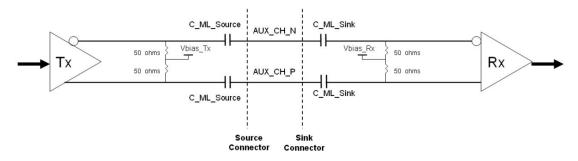
Item	Terminal	Functions
1	VLED+	LED Anode
2	VLED-	LED Cathode



7. Timing Characteristics


7.1 Display Port Interface

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(4)
AUX AC Coupling Capacitor	C_AUX_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C ML source	75		200	nF	(3)


Note (1) Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

(2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor (C_Aux_Source) should be placed on the source device..

(3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

(4) The source device should pass the test criteria described in DisplayPort Compliance Test Specification(CTS) 1.1

7.2 Color Data Input Assignment

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

		Data Signal Red Green Blue																							
	Color																				2				
		R7	R6	R5	R4		R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2		B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:		:		:		:	:		:		:	:	:	:	:			:	:	:	:	:	•	:
Of	:		:	:	:	:	:		:	:	:	:	:	:	:	:	:	:		:	:	:	:		:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:			:	:		:	-		ı.	1		:	Ė		:	:			
Of	:		:	:	:	1:	:		:	:		:	:	:	1	:		:	:		:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:			:	:	:	:	:	:		•	:		:	:	:	:	•	
Of	:		:							:			:		:				:		:	:	·	10.0	•
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

7.3 Display Timing Specifications

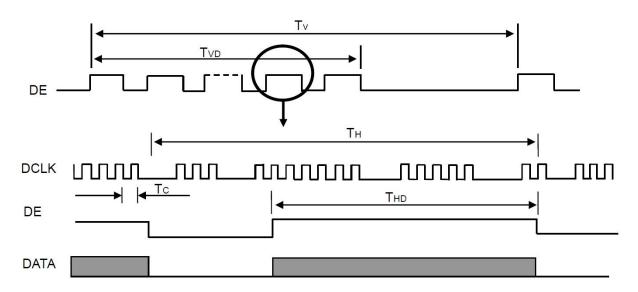
The input signal timing specifications are shown as the following table and timing diagram.

Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	151.6	152.84	154.04	MHz	(-)
	Vertical Total Time	TV	1128	1132	1136	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2240	2250	2260	Тс	1 - 0
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Тс	

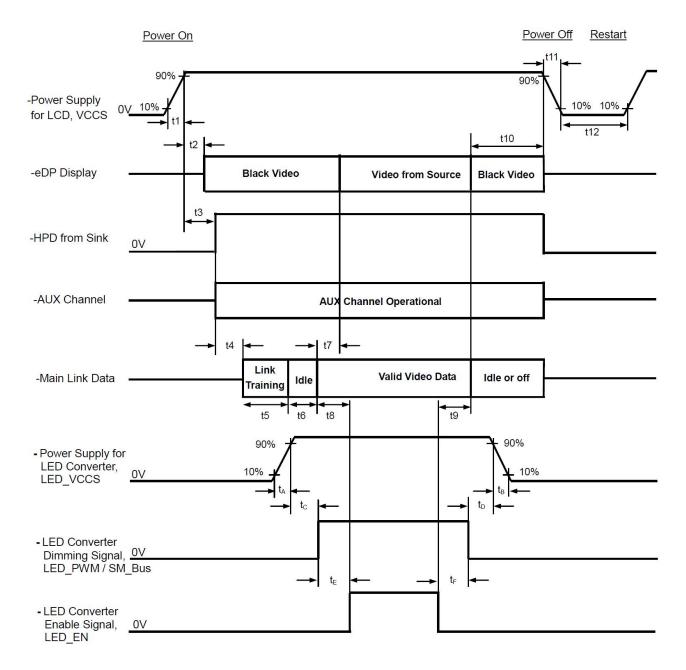
Refresh rate 50Hz (Power Saving Mode)

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	126.35	127.35	128.35	MHz	-
	Vertical Total Time	TV	1128	1132	1136	TH	1=)
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2240	2250	2260	Tc	-
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Тс	-


Refresh rate 50Hz (Power Saving Mode)

Signal	ltem	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	121.3	122.26	123.22	MHz	-
	Vertical Total Time	TV	1128	1132	1136	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
	Vertical Active Blanking Period	TVB	TV-TVD	52	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2240	2250	2260	Тс	
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	
	Horizontal Active Blanking Period	THB	TH-THD	330	TH-THD	Тс	_

Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at power saving mode.

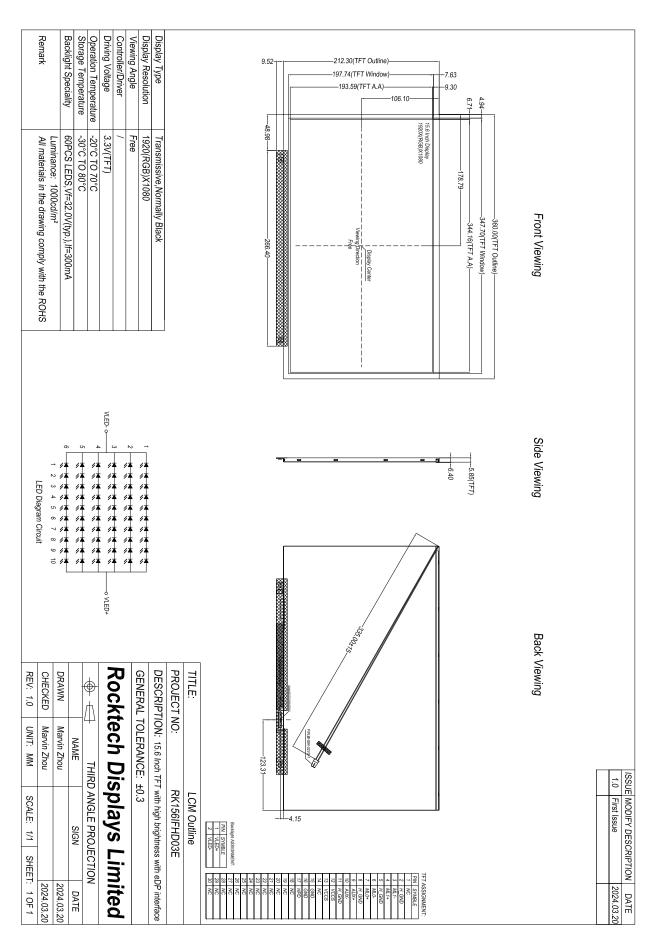


INPUT SIGNAL TIMING DIAGRAM

7.4 Power ON/OFF Sequence

Timing Specifications:

Parameter	Description	Reqd.		lue	Unit	Notes
t1	Power rail rise time, 10% to 90%	By Source	Min 0.5	Max 10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	0	500	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	0	500	ms	Dependant on Source link training protocol
t6	Link idle	Source	0	500	ms	Min accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	80	500	ms	Source must assure display video is stable *: Recommended by INX. To avoid garbage image.
t9	Delay from backlight off to end of valid video data	Source	50	500	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	See Note 5 below



t12	VCCS Power off time	Source	500	-0	ms	-
tA	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
tB	LED power rail fall time, 90% to 10%	Source	0	10	ms	-
tC	Delay from LED power rising to LED dimming signal	Source	1	500	ms	-
tD	Delay from LED dimming signal to LED power falling	Source	1	500	ms	-
tE	Delay from LED dimming signal to LED enable signal	Source	1	500	ms	-
tF	Delay from LED enable signal to LED dimming signal	Source	1	500	ms	-

- Note (1) Please don't plug or unplug the interface cable when system is turned on.
- Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:
 - Upon LCD VCCS power-on (within T2 max)
 - When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCD VCCS power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.
- . Note (5) The VCCS power rail is recommended to rise and fall linearly. If not, please contact us to conduct risk assessment.

8. Outline Dimension

9. Reliability and Inspection Standard

No.	Test Iten	n	Test Conditions	Remark		
1	Storage Storage		80℃, 120Hr	Note		
'	High Temperature Operation	70 ℃, 120 Hr	Note			
2	Storage		-30℃, 120Hr	Noto		
2	Low Temperature Operation	-20℃, 120Hr	Note			
3	High Temperature Humidity	•	40℃, 90%RH, 120Hr	Note		
4	Thermal Cycling operation	•	-20℃ for 30min, 70℃ for 30 min. 100 cycles. Then test at room temperature after 1 hour	Note		
5	Vibration Test(No operation)		Frequency:10~55 HZ; Stroke:1.5 mm;Sweep:10HZ~55HZ~10HZ; 2hours for each direction of X, Y, Z(6 hours for total)			
6	Package Drop Test		Height:60 cm,1 corner, 3 edges, 6 surfaces			
7	Electro Static Dis	scharge	± 2 KV,Human Body Mode, 100pF/1500 Ω			

Note:

- 1) Sample quantity for each test item is 5~10pcs.
- 2) Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

10.PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol
 - Do not scrub hard to avoid damaging the display surface.
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
 - Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature. If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- -Terminal electrode sections.