Rocktech Displays Limited

Module P/N: <u>RK035SHV175</u>

Version: <u>1.0</u>

Description : 3.5inch TFT 320*480 Pixels with <u>LED Backlight,All viewing angle</u> <u>350 nits brightness</u>

- TEL: <u>0086-755-26065260</u>
- Fax: <u>0086-755-26065261</u>
- E-mail: <u>Sales@rocktech.com.hk</u>
- Web: <u>www.rocktech.com.hk</u>

Revision History

Date	Rev.	Page	Description
2020-09-20	1.0	All	First issue

CONTENTS

- GENERAL FEATURES
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL SPECIFICATIONS
- OPTICAL SPECIFICATIONS
- BLOCK DIAGRAM
- PIN DESCRIPTION
- TIMING CHARACTERISTICS
- OUTLINE DIMENSION
- RELIABILITY AND INSPECTION STANDARD
- PRECAUTIONS

1. General Features

Item	Spec	Remark
Display Mode	Normally Black Transmissive	
Viewing Direction	FREE	IPS
Input Signals	MCU/RGB	
Outline Dimensions	54.50(W) x82.85(H) x2.20(D)	
Active Area	48.96mm(W)×73.44mm(H)	
Number of Pixels	320(RGB)×480	
Dot Pitch	0.153mm(W) ×0.153mm(H)	
Pixel Arrangement	RGB Vertical stripes	
Drive IC	IL19488	

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded may cause operation or damage to the unit.

ITEM	Sym.	Min.	Тур.	Max.	Unit	Remark
Power for Circuit Driving	VCC	-0.3	-	3.3	V	
Storage Humidity	H _{ST}	10	-		%RH	
Storage Temperature	T _{ST}	-30	-	80	°C	At
Operating Humidity	H _{OP}	10	-		%RH	25±5 ℃
Operating temperature	T _{OP}	-20	-	70	°C	

3. Electrical Specification

3.1 Driving TFT LCD Panel

lt	Sym.	Min	Тур.	Max	Unit	Note	
Power for 0	VCC	2.5	2.8	3.3	V		
Logic Input	Low Voltage	VIL	-0.3	-	0.2VCC	V	
Voltage	High Voltage	Vін	0.8VCC	-	VCC	V	
Logic Output	Low Voltage	Vol	0	-	0.2VCC	V	
Voltage	High Voltage	Vон	0.8VCC	-	-	V	

3.2 Driving Backlight

Item	Sym.	Min	Тур.	Мах	Unit	Note
Backlight driving voltage	VF	-	3.0	-	V	
Backlight driving current	lf	90	120	150	mA	
Backlight Power Consumption	WBL		360		mW	
Life Time	-		50,000	-		Note 3

Note 1: (Unless specified, the ambient temperature Ta=25 $^{\circ}$ C)

Note 2: The recommended operating conditions refer to a range in which operation of this product is guaranteed. Should this range is exceeded, the operation cannot be guaranteed even if the values may be without the absolute maximum ratings.

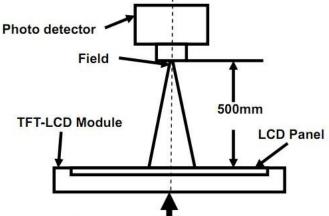
Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.0 **Optical Specifications**

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 500mm from the LCD surface at a viewing angle of Φ and θ equal to 0° .

	Curre		Values		l lucit	Nata
ltem	Sym.	Min.	Тур.	Max.	Unit	Note
1)Contrast Ratio	C/R	-	1000	-		FIG.1
2)Module Luminance	L	300	350	-	cd/m ²	FIG.1
3)Response time	Tr+Tf	-	30	40	ms	FIG.2
	θτ	70	80	-		
	θ_{B}	70	80	-	Dograa	
4)Viewing Angle	θ∟	70	80	-	Degree	
	θ_{R}	70	80	-		
	Wx	0.264	0.304	0.344		
	Wy	0.287	0.327	0.367		
	Rx	-				
C)Ohne we etile it i	Ry	-				
5)Chromaticity	Gx	-				
	Gy	-				
	Bx	-				
	Ву	-				

Measurement System


Notes:

1. Contrast Ratio(CR) is defined mathematically as : Surface Luminance with all white pixels

Contrast Ratio = ------Surface Luminance with all black pixels

- 2. Surface luminance is the center point across the LCD surface 500mm from the surface with all pixels displaying white. For more information see FIG 1.
- 3. Response time is the time required for the display to transition from white to black (Rising Time, Tr) and from black to white (Falling Time, Tf). For additional information see FIG 2.
- 4. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Item	Photo detector		
Contrast Ratio			
Luminance		1°	
Chromaticity	SR-3A	1-	
Lum Uniformity			
Response Time	BM-7A	2°	

The center of the screen

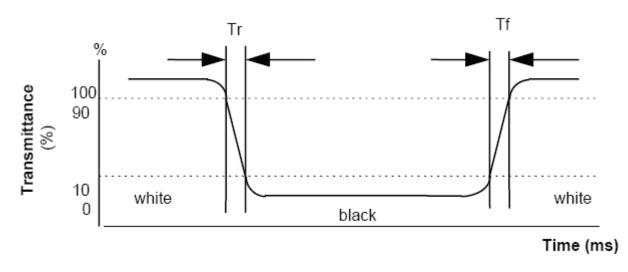
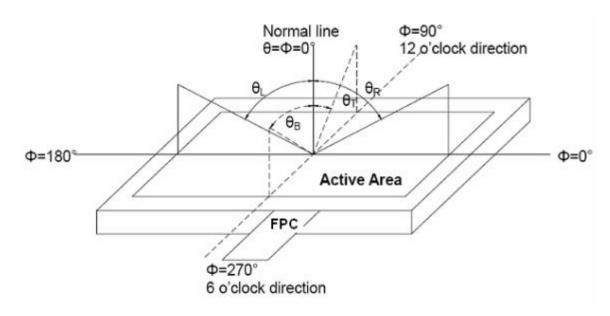
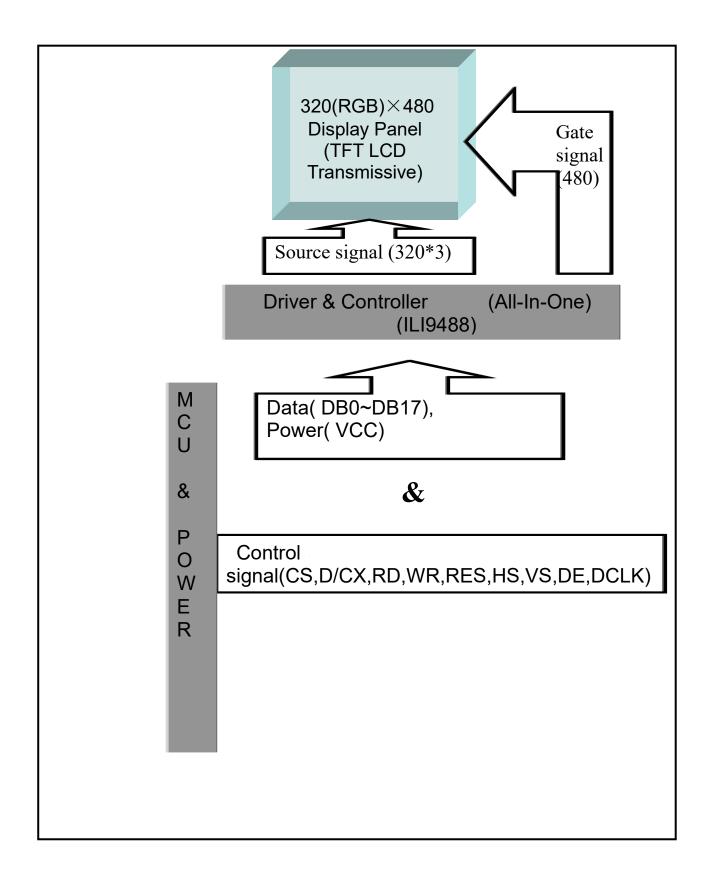


FIG. 2 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".


Response Time = Rising Time(Tr) + Falling Time(Tf)

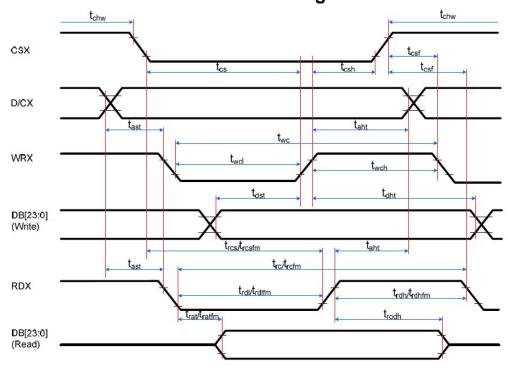
- Rising Time(Tr) : Full White 90% \rightarrow Full White 10% Transmittance.
- Falling Time(Tf) : Full White $10\% \rightarrow$ Full White 90% Transmittance.


FIG. 3 The definition of Viewing Angle

Use Fig. 1(Test Procedure) under Measurement System to measure the contrast from the measuring direction specified by the conditions as the following figure.

5.Block Diagram

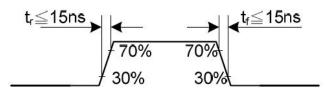
6.Pin Description


Item	Terminal	Functions
1	LED-A	B/L Power input PIN anode
2	LED-K	B/L Power input PIN negative
3	GND	Ground
4	PWM	The PWM frequency output for LED driver control. Please ignore it.
5	IM0	
6	IM1	Select the interface mode
7	IM2	
8	RESET	Reset pin
9	VS	Frame synchronous signal for RGB interface operation.
10	HS	Line synchronous signal for RGB interface operation.
11	PCLK	Dot clock signal for RGB interface operation.
12	DE	Data enable signal for RGB interface operation.
13-30	DB17-DB0	Data bus
31	GND	Ground
32	SDA	Serial data input pin for RGB interface
33	RD	Read pin for MCU interface
34	WR/SCL	Serial clock pin for RGB interface Write pin for MCU interface
35	D/CX	Data/command selection pin for RGB and MCU interface
36	CS	Chip select pin
37	ТЕ	Tearing effect output pin to synchronies MCU to frame writing
38	NC	NC
39	VCC	Power input 2.8V
40	LCD-ID	Connect to VCC

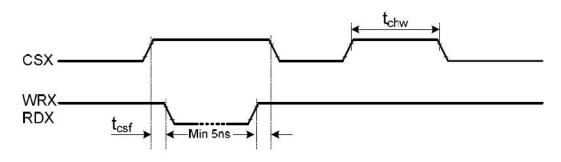
Select the interface mode

IM2	IM1	IMO	Interface
0	0	0	MIPI-DBI Type B 24-bit bus (DB_EN = 1)
0	0	0	MIPI-DBI Type B 18-bit bus (DB_EN = 0)
0	0	1	MIPI-DBI Type B 9-bit bus
0	1	0	MIPI-DBI Type B 16-bit bus
0	1	1	MIPI-DBI Type B 8-bit bus
1	0	1	MIPI-DBI Type C Option 1 (3-line SPI)
1	1	0	MIPI DSI
1	1	1	MIPI-DBI Type C Option 3 (4-line SPI)

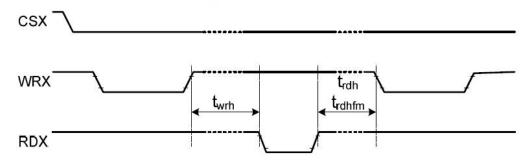
7. Timing Characteristics (details refer to ILI9488) 7.1 Parallel 8/9/16/18/24-bit Interface Timing Characteristics

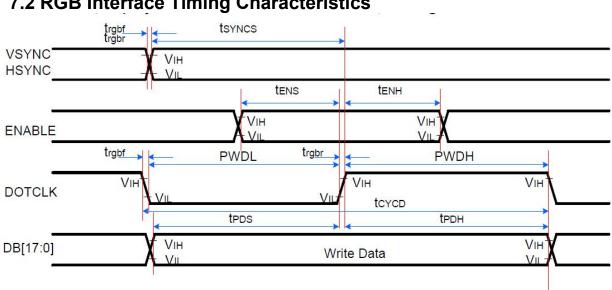


Signal	Symbol	Parameter	min	max	Unit	Description
DCX	tast	Address setup time	0	-	ns	¥
DCX	that	Address hold time (Write/Read)	0	-	ns	¥.
	tchw	CSX "H" pulse width	0		ns	A
	tcs	Chip Select setup time (Write)	15	-	ns	-
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	-
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	ā
	tcsf	Chip Select Wait time (Write/Read)	0		ns	Ā
	twc	Write cycle	30	-	ns	- -
WRX	twrh	Write Control pulse H duration	15	-	ns	-
	twrl	Write Control pulse L duration	15		ns	
	trcfm	Read Cycle (FM)	450		ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	When read from Frame Memory
	trdlfm	Read Control L duration (FM)	355	-	ns	Memory
	trc	Read cycle (ID)	160	1.0	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	When read ID data
	trdl	Read Control pulse L duration	45	-	ns	
DB [23:0],	tdst	Write data setup time	10		ns	
DB [23.0], DB [17:0],	tdht	Write data hold time	10	-	ns	
DB [15:0],	trat	Read access time	121	40	ns	For maximum, CL=30pF For minimum, CL=8pF
DB [8:0],	tratfm	Read access time	573	340	ns	
DB [7:0]	trod	Read output disable time	20	80	ns]

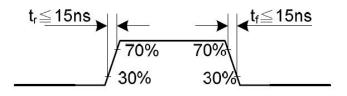


Notes:

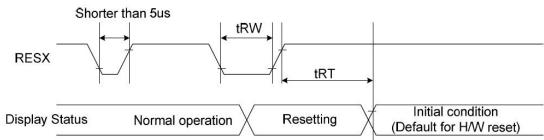

- 1. Ta = -30 to 70 $^{\circ}$ C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V
- 2. Logic high and low levels are specified as 30% and 70% of IOVCC for input signals.
- 3. Input signal rising time and falling time:


4. The CSX timing:

5. The Write to Read or the Read to Write timing:



7.2 RGB Interface Timing Characteristics

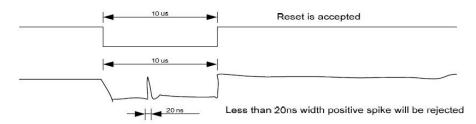

Signal	Symbol	Parameter	min	max	Unit	Description
VSYNC/	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
ENABLE	t _{ENS}	ENABLE setup time	15	-	ns	
ENABLE	t _{ENH}	ENABLE hold time	15	-	ns	
DD [00-0]	t _{POS}	Data setup time	15	-	ns	16-/18-/24-bit bus
DB [23:0]	t _{PDH}	Data hold time	15	-	ns	RGB interface mode
	PWDH	DOTCLK high-level period	20	-	ns	
DOTCLK	PWDL	DOTCLK low-level period	20	-	ns	
DUTCLK	t _{CYCD}	DOTCLK cycle time	50	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	254	15	ns	

Note: Ta = -30 to 70 °C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V

7.3 Reset Timing

Table 39: Reset Timing

Signal	Symbol	Parameter	Min	Max	Unit
	tRW	Reset pulse duration	10		uS
RESX	UDT			5 (note 1,5)	mS
	tRT	Reset cancel		120 (note 1,6,7)	mS


Notes:

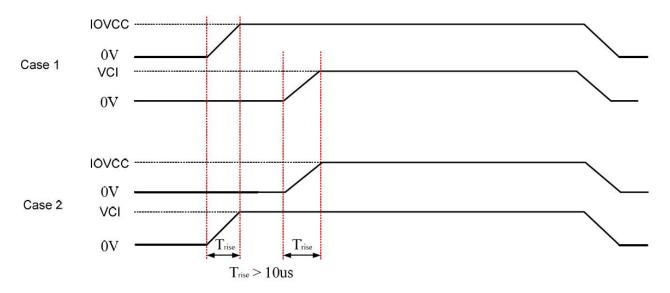
- The reset cancel also includes the required time for loading ID bytes, VCOM setting and other settings from the EEPROM to registers. After a rising edge of RESX, this loading is done within 5 ms after the H/W reset cancel (tRT).
- According to the Table 40, a spike due to an electrostatic discharge on the RESX line does not cause irregular system reset.

RESX Pulse	Action	
Shorter than 5us	Reset Rejected	
Longer than 9us	Reset	
Between 5us and 9us	Reset starts	

Table 40: Reset Description

- 3. During the Reset period, the display will be blanked (When Reset starts in the Sleep Out mode, the display will enter the blanking sequence in at least 120 ms. The display remains the blank state in the Sleep In mode.) and then return to the default condition for the Hardware Reset.
- 4. Spike Rejection can also be applied during a valid reset pulse, as shown below:

- 5. When Reset is applied during the Sleep In Mode.
- 6. When Reset is applied during the Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. The Sleep Out command also cannot be sent in 120msec.

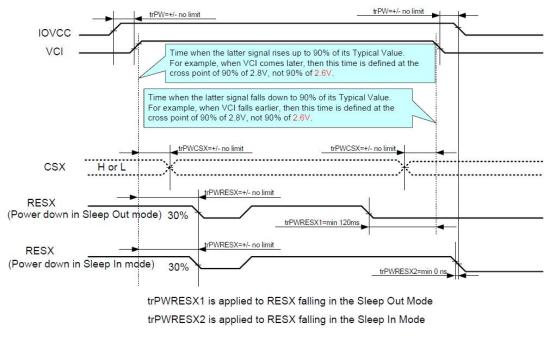

Rocktech

7.4 Power ON/OFF Sequence

IOVCC and VCI can be applied or powered down in any order. During the Power Off sequence, if the LCD is in the Sleep Out mode, VCI and IOVCC must be powered down with a minimum of 120msec. If the LCD is in the Sleep In mode, VCI and IOVCC can be powered down with a minimum of 0msec after the RESX has been released. CSX can be applied at any time or can be permanently grounded. RESX has high priority over CSX.

Notes:

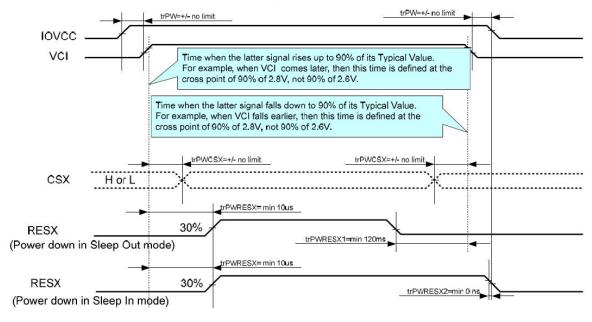
- 1. There will be no damage to the ILI9488 if the power sequences are not met.
- 2. There will be no abnormal visible effects on the display panel during the Power On/Off Sequence.
- 3. There will be no abnormal visible effects on the display between the end of the Power On Sequence and before receiving the Sleep Out command, and also between receiving the Sleep In command and the Power Off Sequence.
- 4. If the RESX line is not steadily held by the host during the Power On Sequence as defined in Sections 11.1 and 11.2, then it will be necessary to apply the Hardware Reset (RESX) after the completion of the Host Power On Sequence to ensure correct operations. Otherwise, all the functions are not guaranteed.
- 5. When the power is turned on, the climb period timing(Trise) must be greater than 10us.



RK035SHV175

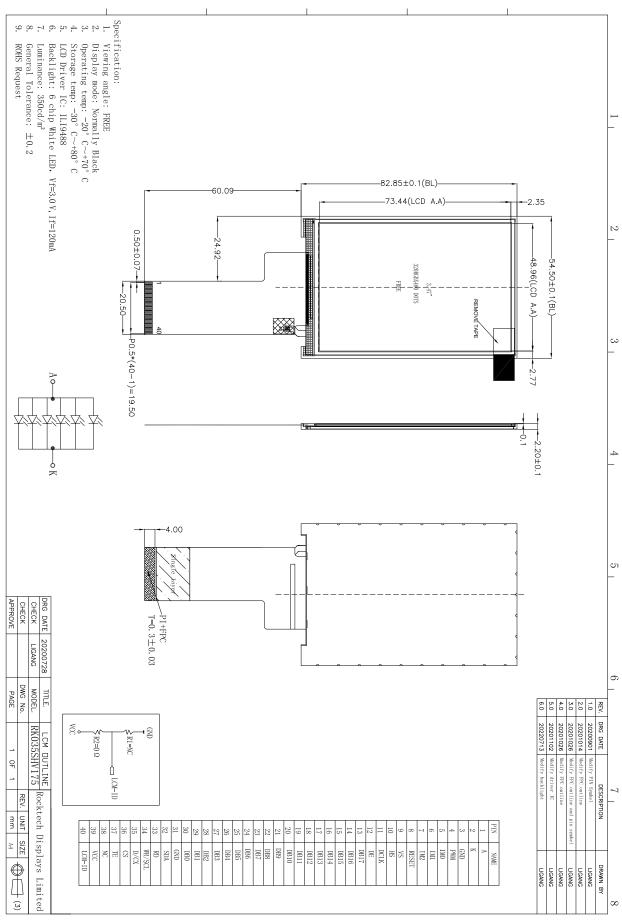
7.4.1 Case1-RESX Line is held high or unstable by host at Power ON

TFCH


If the RESX line is held High or unstable by the host during Power On, then Hardware Reset must be applied after both VCI and IOVCC have been applied. Otherwise, the correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

Note: Unless otherwise specified, timings herein show the cross point at 50% of the signal power level.

7.4.2 Case2-RESX Line is held low by host at Power ON


If the RESX line is held Low (and stable) by the host during Power On, then the RESX must be held low for a minimum of 10µsec after both VCI and IOVCC have been applied.

trPWRESX1 is applied to RESX falling in the Sleep Out Mode trPWRESX2 is applied to RESX falling in the Sleep In Mode

8. Outline Dimension

9. Reliability and Inspection Standard

No.	Test Item		Test Conditions	Remark
1	High Temperature	Storage	80 ℃, 120Hr	Note
		Operation	70° ℃, 120H r	Note
2	Low Temperature	Storage	-30 ℃, 120Hr	Note
		Operation	-20 ℃, 120Hr	
3	High Temperature and High Humidity		40℃, 90%RH, 120Hr	Note
4	Thermal Cycling Test(No operation)		-20℃ for 30min, 70℃ for 30 min. 100 cycles. Then test at room temperature after 1 hour	Note
5	Vibration Test(No operation)		Frequency :10~55 HZ; Stroke :1.5 mm;Sweep:10HZ~55HZ~10HZ; 2hours for each direction of X, Y, Z(6 hours for total)	
6	Package Drop Test		Height:60 cm,1 corner, 3 edges, 6 surfaces	
7	Electro Static Discharge		\pm 2KV,Human Body Mode, 100pF/1500Ω	

Note:

1) Sample quantity for each test item is 5~10pcs.

2) Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Rocktech

10.PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol
 - Do not scrub hard to avoid damaging the display surface.
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal

connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature. If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- -Terminal electrode sections.