Rocktech Displays Limited

Module	P/N: <u>RK</u>	<u>024HH298</u>

Version: 1.0

Description: 2.4 inch TFT 240*320 Pixels

With LED backlight

TEL: <u>0086-755-26065260</u>

Fax: <u>0086-755-26065261</u>

E-mail: <u>Sales@rocktech.com.hk</u>

Web: www.rocktech.com.hk

Revision History

Date	Rev.	Page	Description
2021-03-25	1.0	All	First issue

CONTENTS

- GENERAL FEATURES
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL SPECIFICATIONS
- OPTICAL SPECIFICATIONS
- BLOCK DIAGRAM
- PIN DESCRIPTION
- TIMING CHARACTERISTICS
- OUTLINE DIMENSION
- RELIABILITY AND INSPECTION STANDARD
- PRECAUTIONS

1. General Features

Item	Spec	Remark
Display Mode	Normally White transmissive	
Viewing Direction	12 O'CLOCK	
Input Signals	RGB	
Outline Dimensions	42.72(W) x60.3(H) x2.2(D)	
Active Area	36.72mm(W)×48.96mm(H)	
Number of Pixels	240×RGB×320 Pixels	
Dot Pitch	0.153mm(W) × 0.153mm(H)	
Pixel Arrangement	RGB Vertical stripes	
Drive IC	ILI9341V	

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded may cause operation or damage to the unit.

ITEM	Sym.	Min.	Тур.	Max.	Unit	Remark
Power for Circuit Driving	VDD	-0.3	1	4.6	V	
Power for Circuit Logic	Vt	-0.3	-	Vcc+0.3	V	
Storage Humidity	H _{ST}	10	-		%RH	
Storage Temperature	T _{ST}	-30	-	70	$^{\circ}\!\mathbb{C}$	At
Operating Humidity	H _{OP}	10	-		%RH	25±5 ℃
Operating temperature	T _{OP}	-20	-	60	$^{\circ}$ C	

3. Electrical Specification

3.1 Driving TFT LCD Panel

It	Sym.	Min	Тур.	Max	Unit	Note	
Power for Circuit Driving		VDD	2.5	3.3	3.6	V	
Logic Input	Low Voltage	VIL	-0.3	-	0.2Vcc	V	
Voltage	High Voltage	ViH	0.8Vcc	-	Vcc	V	
Logic Output	Low Voltage	Vol	0	-	0.2Vcc	V	
Voltage	High Voltage	Vон	0.8Vcc	-	-	V	

3.2 Driving Backlight

Item	Sym.	Min	Тур.	Max	Unit	Note
Backlight driving voltage	VF	3.0	3.2	3.4	V	
Backlight driving current	lF	60	80	100	mA	
Backlight Power Consumption	WBL	1	256	1	mW	
Life Time	1	1	50,000	1		Note 3

Note 1: (Unless specified, the ambient temperature Ta=25℃)

Note 2: The recommended operating conditions refer to a range in which operation of this product is guaranteed. Should this range is exceeded, the operation cannot be guaranteed even if the values may be without the absolute maximum ratings.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.Optical Specifications

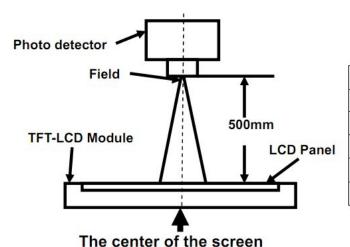
Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 $^{\circ}$ C. The values specified are at an approximate distance 500mm from the LCD surface at a viewing angle of Φ and θ equal to 0° .

Mana.	Curre		Values		l la:t	Note	
Item	Sym.	Min.	Тур.	Max.	Unit	Note	
1)Contrast Ratio	C/R	350	500	-		FIG.1	
2)Module Luminance	L	-	250	-	cd/m ²		
3)Response time	Tr+Tf	-	25	40	ms	FIG.2	
	θτ	60	70	-			
	θв	40	50	-	Dograd		
	θι	60	70	-	Degree		
	θ_{R}	60	70	-			
	Wx	0.259	0.299	0.339			
4)\/ioving Angle	Wy	0.293	0.333	0.373		FIO 2	
4)Viewing Angle	Rx	-	-	-		FIG.3	
	Ry	-	-	-			
	Gx	-	-	-			
	Gy	-	-	-			
	Bx	-	-	-			
	Ву	-	-	-			

♦ Measurement System

Notes:

1. Contrast Ratio(CR) is defined mathematically as:


Surface Luminance with all white pixels

Contrast Ratio = ------

Surface Luminance with all black pixels

- 2. Surface luminance is the center point across the LCD surface 500mm from the surface with all pixels displaying white. For more information see FIG 1.
- 3. Response time is the time required for the display to transition from white to black (Rising Time, Tr) and from black to white (Falling Time, Tf). For additional information see FIG 2.
- 4. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Item	Photo detector	Field
Contrast Ratio		
Luminance	CD 2A	1°
Chromaticity	SR-3A	
Lum Uniformity		
Response Time	BM-7A	2°

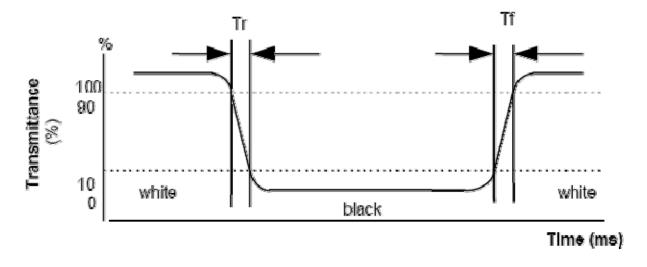
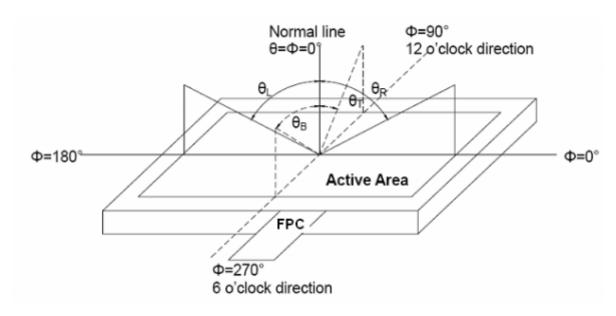
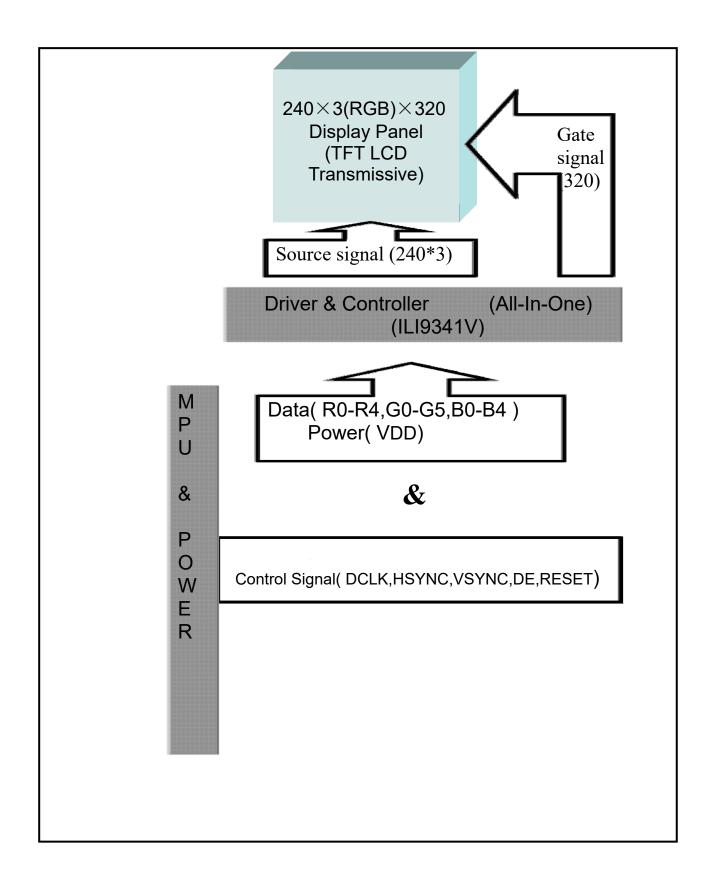


FIG. 2 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

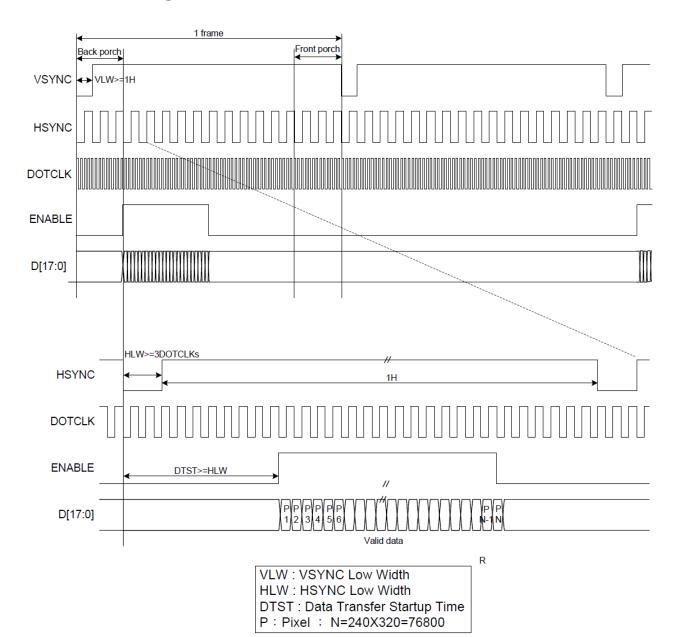

Response Time = Rising Time(Tr) + Falling Time(Tf)

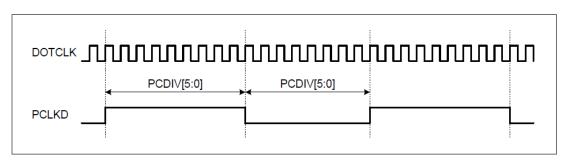
- Rising Time(Tr): Full White 90% → Full White 10% Transmittance.
- Falling Time(Tf): Full White 10% → Full White 90% Transmittance.


FIG. 3 The definition of Viewing Angle

Use Fig. 1(Test Procedure) under Measurement System to measure the contrast from the measuring direction specified by the conditions as the following figure.

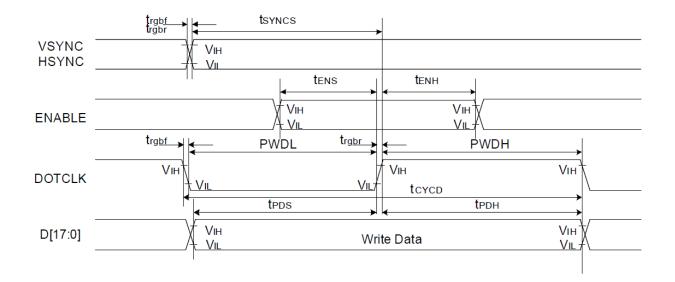
5.Block Diagram


6.Pin Description


Item	Terminal	Functions
1	A	B/L Power input PIN anode
2	К	B/L Power input PIN negative
3	GND	Ground
4	VDD	Power input 3.3V
5-7	GND	Ground
8-12	R0-R4	Red Signal Data
13,14	GND	Ground
15-20	G0-G5	Green Signal Data
21-23	GND	Ground
24-28	B0-B4	Blue Signal Data
29	GND	Ground
30	DCLK	Dot clock signal input used in RGB interface circuit
31	VDD	Power input 3.3V
32	HSYNC	Horizontal synchronization signal input pin
33	VSYNC	Vertical synchronization signal input pin
34	DE	Enable signal input used in RGB interface circuit
35	RESET	System Reset
36	GND	Ground
37	CSX	Chip Select
38	D/CX(SCL)	Data & Command Select PIN
39	SDI/SDA	Serial bus interface data input and output pin
40	NC	No Connection

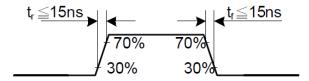
7. Timing Characteristics

7.1. The timing chart of 18/16-bit RGB interface mode



Note 1: The DE signal is not needed when RGB interface SYNC mode is selected.

Note 2: VSPL='0', HSPL='0', DPL='0' and EPL='0' of "Interface Mode Control (B0h)" command.



7.2 Parallel 18/16/6-bit RGB interface Timing Characteristics

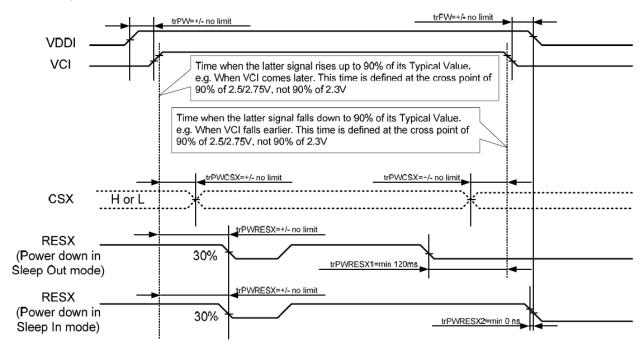
Signal	Symbol	Parameter		max	Unit	Description
VSYNC /	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{ENS}	DE setup time	15	-	ns	
DE	t _{ENH}	DE hold time	15	-	ns	
D[17:0]	t _{POS}	Data setup time	15	-	ns	18/16-bit bus RGB
D[17.0]	t _{PDH}	Data hold time	15	-	ns	interface mode
	PWDH	DOTCLK high-level period	15	-	ns	
DOTCLK	PWDL	DOTCLK low-level period	15	-	ns	
DOTCLK	t _{CYCD}	DOTCLK cycle time	100	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	
VSYNC /	tsyncs	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	tsynch	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{ENS}	DE setup time	15	-	ns	
DE	t _{ENH}	DE hold time	15	-	ns	
D[47.0]	t _{POS}	Data setup time	15	-	ns	6-bit bus RGB
D[17:0]	t _{PDH} Data hold time		15	-	ns	interface mode
	PWDH	DOTCLK high-level pulse period	15	-	ns	
DOTCLK	PWDL	DOTCLK low-level pulse period	15	-	ns	
DOTCLK	t _{CYCD}	DOTCLK cycle time	50	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

7.3 Power ON/OFF Sequence

VDDI and VCI can be applied in any order.

VCI and VDDI can be powered down in any order.

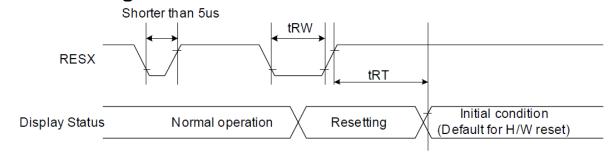

During power off, if LCD is in the Sleep Out mode, VCI and VDDI must be powered down minimum 120msec after RESX has been released.

During power off, if LCD is in the Sleep In mode, VDDI or VCI can be powered down minimum 0msec after RESX has been released.

CSX can be applied at any timing or can be permanently grounded. RESX has priority over CSX.

- Note 1: There will be no damage to the display module if the power sequences are not met.
- Note 2: There will be no abnormal visible effects on the display panel during the Power On/Off Sequences.
- Note 3: There will be no abnormal visible effects on the display between end of Power On Sequence and before receiving Sleep Out command. Also between receiving Sleep In command and Power Off Sequence.
- Note 4: If RESX line is not held stable by host during Power On Sequence as defined in Sections 12.1 and 12.2, then it will be necessary to apply a Hardware Reset (RESX) after Host Power On Sequence is complete to ensure correct operation. Otherwise function is not guaranteed.

If RESX line is held High or unstable by the host during Power On, then a Hardware Reset must be applied after both VCI and VDDI have been applied – otherwise correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

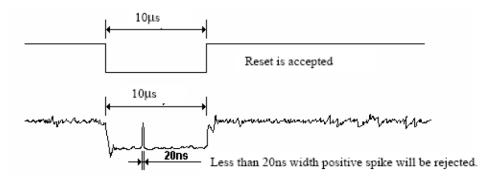


trPWRESX1 is applied to RESX falling in the Sleep Out Mode trPWRESX2 is applied to RESX falling in the Sleep In Mode

Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal power level.

7.4 Reset Timing

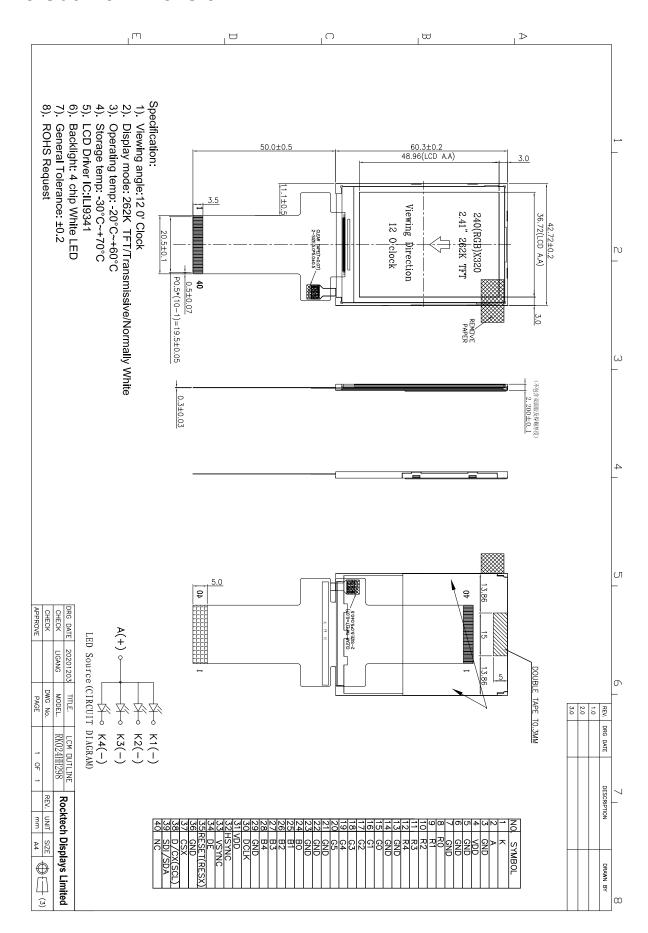
Signal	Symbol	Parameter	Min	Max	Unit
RESX	tRW	Reset pulse duration	10		uS
	+DT	Depart concel		5 (note 1,5)	mS
	tRT	Reset cancel		120 (note 1,6,7)	mS


Note 1: The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NV memory to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

Note 2: Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below: -

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 10us	Reset
Between 5us and 10us	Reset starts

Note 3: During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In -mode.) And then return to Default condition for Hardware Reset.


Note 4: Spike Rejection also applies during a valid reset pulse as shown below:

- Note 5: When Reset applied during Sleep In Mode.
- Note 6: When Reset applied during Sleep Out Mode.
- Note 7: It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

8. Outline Dimension

9. Reliability and Inspection Standard

No.	Test Item		Test Conditions	Remark
1	High Temperature	Storage	70℃, 120Hr	Note
		Operation	60℃, 120Hr	Note
2	Low Temperature	Storage	-30℃, 120Hr	Note
		Operation	-20℃, 120Hr	
3	High Temperature and High Humidity		40℃, 90%RH, 120Hr	Note
4	Thermal Cycling Test(No operation)		-20℃ for 30min, 60℃ for 30 min. 100 cycles. Then test at room temperature after 1 hour	Note
5	Vibration Test(No operation)		Frequency:10~55 HZ; Stroke:1.5 mm;Sweep:10HZ~55HZ~10HZ; 2hours for each direction of X, Y, Z(6 hours for total)	
6	Package Drop Test		Height:60 cm,1 corner, 3 edges, 6 surfaces	
7	Electro Static Discharge		± 2 KV,Human Body Mode, 100pF/1500 Ω	

Note:

- 1) Sample quantity for each test item is 5~10pcs.
- 2) Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

10.PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
 - Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal

connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature. If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- -Terminal electrode sections.